UGA suppression by a mutant RNA of the large ribosomal subunit.
نویسندگان
چکیده
A role for rRNA in peptide chain termination was indicated several years ago by isolation of a 168 rRNA (small subunit) mutant of Escherichia coli that suppressed UGA mutations. In this paper, we describe another interesting rRNA mutant, selected as a translational suppressor of the chain-terminating mutant trpA (UGA211) of E. coli. The finding that it suppresses UGA at two positions in trpA and does not suppress the other two termination codons, UAA and UAG, at the same codon positions (or several missense mutations, including UGG, available at one of the two positions) suggests a defect in UGA-specific termination. The suppressor mutation was mapped by plasmid fragment exchanges and in vivo suppression to domain II of the 23S rRNA gene of the rrnB operon. Sequence analysis revealed a single base change of G to A at residue 1093, an almost universally conserved base in a highly conserved region known to have specific interactions with ribosomal proteins, elongation factor G, tRNA in the A-site, and the peptidyltransferase region of 23S rRNA. Several avenues of action of the suppressor mutation are suggested, including altered interactions with release factors, ribosomal protein L11, or 16S rRNA. Regardless of the mechanism, the results indicate that a particular residue in 23S rRNA affects peptide chain termination, specifically in decoding of the UGA termination codon.
منابع مشابه
The involvement of base 1054 in 16S rRNA for UGA stop codon dependent translational termination.
The deletion of the highly conserved cytidine nucleotide at position 1054 in E. coli 16S rRNA has been characterized to confer an UGA stop codon specific suppression activity which suggested a functional participation of small subunit rRNA in translational termination. Based on this structure-function correlation we constructed the three point mutations at site 1054, changing the wild-type C re...
متن کاملA novel single amino acid change in small subunit ribosomal protein S5 has profound effects on translational fidelity.
S5 is a small subunit ribosomal protein (r-protein) linked to the functional center of the 30S ribosomal subunit. In this study we have identified a unique amino acid mutation in Escherichia coli S5 that produces spectinomycin-resistance and cold sensitivity. This mutation significantly alters cell growth, folding of 16S ribosomal RNA, and translational fidelity. While translation initiation is...
متن کاملStudies on the functional interaction of translation initiation factor IF1 with ribosomal RNA
Translation initiation factor IF1 is a small, essential and ubiquitous protein factor encoded by a single infA gene in bacteria. Although several important functions have been attributed to IF1, the precise reason for its indispensability is yet to be defined. It is known that IF1 binds to the ribosomal A-site during initiation, where it primarily contacts ribosomal RNA (rRNA) and induces large...
متن کاملThe sarcin-ricin loop of 23S rRNA is essential for assembly of the functional core of the 50S ribosomal subunit.
The sarcin-ricin loop (SRL) of 23S rRNA in the large ribosomal subunit is a factor-binding site that is essential for GTP-catalyzed steps in translation, but its precise functional role is thus far unknown. Here, we replaced the 15-nucleotide SRL with a GAAA tetraloop and affinity purified the mutant 50S subunits for functional and structural analysis in vitro. The SRL deletion caused defects i...
متن کامل40S subunit dissociation and proteasome-dependent RNA degradation in nonfunctional 25S rRNA decay.
Eukaryotic cells have quality control systems that eliminate nonfunctional rRNAs with deleterious mutations (nonfunctional rRNA decay, NRD). We have previously reported that 25S NRD requires an E3 ubiquitin ligase complex, which is involved in ribosomal ubiquitination. However, the degradation process of nonfunctional ribosomes has remained unknown. Here, using genetic screening, we identified ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 92 26 شماره
صفحات -
تاریخ انتشار 1995